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A simple numerical method is presented for solving the eigenvalue problem which 
governs the stability of Couette flow. The method is particularly useful in 
obtaining the eigenfunctions associated with the various modes of instability. 
When the cylinders rotate in opposite directions, these eigenfunctions exhibit an 
exponentially damped oscillatory behaviour for sufficiently large values of - p, 
where p = S&/Ll1. In  terms of the stream function which describes the motion 
in planes through the axis of the cylinders, this means that weak, viscously driven 
cells appear in the outer layers of the fluid which, according to Rayleigh's criterion, 
are dynamically stable. For p = - 3, for example, four cells are present, the 
amplitudes of which are in the ratios 1.0:0.0172: 0.013: 0.00125. 

1. Introduction 
The problem of the stability of viscous flow between contra-rotating cylinders 

has been discussed in the preceding paper by an asymptotic method which is 
especially suited to dealing with the limiting case of p -+ - 00. For finite negative 
values of ,LA, the method is still applicable but the required calculations become 
excessively laborious. In  this paper, therefore, we present an alternative method 
of dealing with the problem based upon direct numerical integration of the 
governing equation. This method is particularly well suited to problems of this 
and similar type in which one wishes to explore the dependence of the solution on 
one or more parameters. 

For purposes of the present discussion it is convenient to write the governing 
equation in the form (cf. Duty & Reid 1964, equation (18)) 

(0'- 2.' = - a%'( 1 - 2) V ,  (1)  
where v is the azimuthal component of the perturbation velocity and the radial 
component of the perturbation velocity u is proportional to (D2-az)v .  The 
boundary conditions that must be satisfied are 

v = ( P - c $ ) v  = D(02-aZ)v = 0 at  z = 0 and 1-p. (2) 
t Present address : Departments of Mathematics and the Geophysical Sciences, The 

University of Chicago. 
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In  this formulation of the problem the nodal point has been fixed at  z = 1 and it is 
only the fluid lying between z = 0 and z = 1 that is dynamically unstable. As a 
result of this normalization, ac and 7, tend to finite limits as p -+ - CQ. 

2. Method of solution 
The eigenvalue problem defined by equations (1)  and ( 2 )  is a two-point 

boundary-value problem. For numerical purposes, however, it  is desirable to  
convert i t  into an initial-value problem and this can be done in the following 
manner. Let us first rewrite equation (1) as a system of first-order equations in 
the form 

(3) 

(4) 

1 
1 

DU = V ,  DV = a2U+ W ,  DW = S, 
D S  = a2W+ Y ,  DY  = 2, DZ = ~ X ~ y - a ~ T ( 1 - z )  U ,  

where U = v, V = Dv, W = (D2- a2) V ,  

S = D(D2-a2)v, Y = (D2-a2)2~ ,  2 = D ( D 2 - a 2 ) 2 ~ .  

The boundary conditions (2) then require that 

U = W = x ' = O  a t  z = O  and z = l - p .  (5) 

Let us now define three linearly independent solutions J$ (i = 1 ,2 ,3 )  of equation ( 1  ) 
by imposing the initial conditions 

= (D2-a2)X = D(D2-a2)% = 0 ( i = 1 , 2 , 3 )  (6) 

[DV,, (D2-a2)2q,  D(D2-a2)2K] = (0 ,1 ,0 )  for i = 2, ( 7 )  

(1,0,0) for i = 1, i (0 ,0 ,1)  for i = 3, 
and 

at z = 0. 

tions at z = 0 can therefore be written in the form 
A solution of equation (1) which automatically satisfies the boundary condi- 

and the condition that v satisfy the boundary conditions at z = 1 - p  then leads 
to the relations 

3 3 3 

i = l  i = l  i=l  
3 A& = 0, 3 At(D2-a2)J$ = 0, AiD(D2-a2)K = 0. ( 9) 

If the constants Ai are not to vanish identically, thenit isnecessary that thedeter- 
minant of the system vanish, i.e. 

where the elements in the determinant are evaluated at  the outer boundary 
z = 1 -p. This is the required characteristic equation from which the curves of 
neutral stability and hence the critical values of a and 7 can be obtained. 
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The basic solutions were obtained by integrating the system of first-order 
equations (3) by the Runge-Kutta method. The effect of finite interval size was 
investigated by obtaining solutions at different values of h and then applying 
Richardson’s deferred approach to the limit which is of the order of h4 in this case. 
Round-off error was controlled by employing double-precision arithmetic on an 
IBM 704 computer. It is felt, therefore, that the results given in table 1 (except 
for those values printed in bold) are correct to within 0.6 unit in the final digit. 

P 

+ 1.0 
0.0 

- 0.5 
- 1.0 
- 1.5 
- 2.0 
- 2.5 
- 3.0 

+ 1.0 
0.0 

- 0.5 
- 1.0 
- 2.0 

a, 

- 
3.1266 
2-133 
1.9995 
2.040 
2.0336 
3.0337 
2.0337 

- 
5.361 
4.134 
4.1824 
4.1833 

7, 

First mode 
- 

3,389.901 
1,266.911 
1,166.412 
1,180.443 
1,178.638 
1,178.594 
1,178.596 

Second mode 
- 

38,497.89 
22,693.18 
22,887.95 
22,89427 

a, 

3.117 
3.127 
3-199 
3.999 
5499 
6.101 
7.118 
8.135 

5.365 
5.361 
6.201 
8.365 

12.55 

Tc 

1,707.762 
3,389.901 
6,413.738 

18,662.59 
46,111.06 
98,469.68 

176,862.8 
301,720.6 

17,610.39 
38,497-89 
114,884.2 
366,207.2 

1854,436 

The values shown in bold were obtained by Mr T. H. Hughes on an IBM 7070 computer 
using single-precision arithmetic; all other values were obtained on an IBM 704 computer 
using double-precision arithmetic. 

TABLE 1. Critical values of the Taylor number and wave-number for the 
first and second modes of instability. 

For a given value of p, we are primarily interested in determining the least 
positive value of T and the corresponding value of a, for these values define the 
critical conditions at which instability first sets in. This was done by first choosing 
a value of a and then varying 7 until equation (10) was satisfied. This procedure 
was then repeated for different values of a until the minimum point on the 
neutral curve was well defined.? With a, and T, determined in this manner, the 
values of A,/A,  and ASIA, could then be determined from any two of the equa- 
tions (9). Finally, the eigenfunctions thus obtained were normalized so that the 
amplitude of the radial component of the velocity perturbation was unity. Some 
results for the second mode of instability have also been obtained. These results 
not only contribute to our general understanding of the nature of the solutions of 
equation (1) for negative values of p but also are relevant in connexion with some 
of the current ideas on finite-amplitude effects. 

always be the ease, however (Hughes & Reid 1962). 
t For this problem the neutral curves have only a single minimum. This need not 

7 Fluid Mech. 20 



98 D. L. Harris and W .  H. Reid 

3. Results for the first and second modes 
The behaviour of ccc and 7, for negative values of p (for the first mode of 

instability) are shown in figures 1 and 2.7 The highly damped, oscillatory nature 
of these curves as p --f - co is particularly noteworthy. This rather curious 
behaviour can be traced to the fact that as p varies from 0 to - 00, the number of 

I I I I 
0 -1  -2 - 3  

iu = %/% 
FIGURE 1. The behaviour of the critical 

wave-number a,. 

0 -1  -2 - 3  

P = Q2i% 
FIGURE 2. The behaviour of the critical 

Taylor number 7,. 

zeros possessed by the eigenfunctions of the nth mode increase from n - 1 to co. 
Since the streamfunction which describes the motion in planes through the axis 
is proportional to the radial eigenfunction, this means that even for the first mode 
there may be more than one cell across the gap. These outer cells, being located in 
a region that is dynamically stable, are viscously driven and hence have small 
amplitudes. 

These remarks are illustrated in figures 3-5 which show the radial eigenfunc- 
tions for the first$ and second modes for ,u = 0, - 0.5 and - 1-0. In  the case of 
the first mode, this eigenfunction acquires its first zero at a value of p lying 
between - 0.5 and - 1.0 and this may partly explain why these viscously driven 

t In drawing these figures, the results obtained by Chandrasekhar (1954) have also 
been used. 

$ The results obtained here for the first mode for y = 0 are in close agreement with the 
results obtained recently by Davey (1962). The small differences that do exist between the 
two sets of results are due entirely to  the use of slightly different values of a,. 
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outer cells have not been observed experimentally. Unfortunately, even with the 
present accuracy, it has not been possible in figure 5 to complete the curve for the 
second eigenfunction. Finally, the cell pattern for ,u = - 3 is shown in figure 6. 
This figure clearly shows the heavily damped character of the motion in the outer, 
stable region of the flow and further illustrates the limitations of Fourier expan- 
sion techniques at such large negative values of p. 

1 *c 

0.5 

u o  

- 0.5 

- 1.0 
FIGURE 3. The radial eigenfunctions u for the first and second 

modes of instability for ,u = 0. 

FIGURE 4, The radial eigenfunctions u for the first and second modes 
of instability for p = - 0.5. 

4. Concluding remarks 
The method of solution described in this paper is a very simple one, well 

adapted for use on a high-speed computer. No attempt has been made, however, 
to achieve fully automatic operation nor have we explored the refinements 

7-2 
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suggested by Fox (1957). Rather we have sought to present the method in its 
simplest form and to demonstrate its practical usefulness in one particular case. 
The method does not suffer from some of the limitations of existing methods of 
approximation; i t  can, for example, be easily adapted to treat the present 
problem without making the small-gap approximation. 

FJGURE 5 .  The radial eigenfunctions u for the first and second 
modes of instability for p = - 1.0. 

T 
0,005 

0010 

+b= +0.013 $=-0 0125 

0 

P = (1 -p)C 

FIGURE 6. The cell pattern at the onset of instability for p = -3 .  I$ = u(z)cos(a[/d). 

The success of the method lies, in part, in the fact that for flows with curved 
streamlines there are no critical layers-at least not if one invokes the principle 
of exchange of stabilities-as there are for parallel flows whose stability is 
governed by the Orr-Sommerfeld equation. The chief limitation of the method, 
however, arises from the fact that, even for only moderately negative values of p, 
the solutions defined by the initial conditions (6) and (7) tend to become 
linearly dependent as the outer boundary is approached. More specifically, if 
eight decimal digits are used in the calculations, then one is limited to a Taylor 
number T (not T )  up to about 105 (cf. table 1). 
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The work of one of us (W. H. R.) was supported by the Fluid Dynamics Branch 
of the Office of Naval Research under Contract Nonr 562(07) with Brown 
University. 

The untimely death of Daniel Lester Harris, I11 on 29 April 1962 deprived the 
second author of a close friend and valued collaborator. The present paper is a 
brief account of our efforts during the previous three years to develop numerical 
methods for problems in hydrodynamic stability. 
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